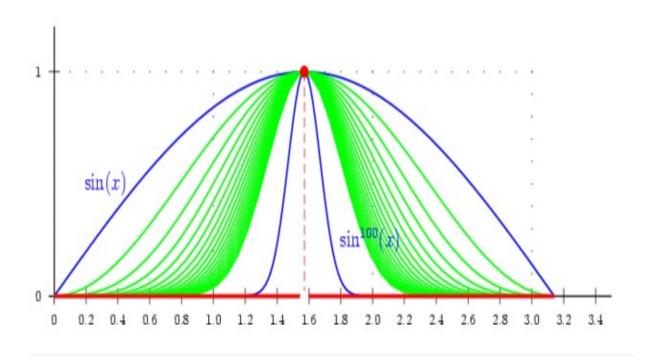


Mathématiques

Chapitre 5 : Suites de fonctions



Enseignante: Sylvia Le Beux sylvia.lebeux@univ-tln.fr

Chapitre 5: Suites de fonctions

I. Convergence d'une suite de fonctions :

1) Convergence simple

<u>Définition</u> Soit $(s_n)_{n\in IN}$, une suite de fonctions définies sur un domaine D. On dit que la suite de fonction (s_n) converge simplement vers une fonction s si pour chaque x fixé, la suite numérique $(s_n(x))$ converge vers s(x), ce qui se traduit par :

$$\forall x \in D, \ \forall \varepsilon > 0, \ \exists \ N \in IN \ tel \ que \ \forall n \ge N, |s_n(x) - s(x)| < \varepsilon$$

Exemple Soit $(s_n)_{n \in IN}$ la suite de fonctions définie par : $s_n(x) = x^n x \in \mathbb{R}$. Déterminer le domaine D de convergence de la suite (s_n) , ainsi que la fonction limite s.
2) Convergence uniforme
<u>Définition</u> Soit $(s_n)_{n\in\mathbb{N}}$, une suite de fonctions définies sur un domaine D. On dit que la
suite de fonction (s_n) converge uniformément sur D vers s si on a :
$\forall \varepsilon > 0, \ \exists \ N \in IN \ tel \ que \ \forall n \ge N, \ \forall x \in D, \ s_n(x) - s(x) < \varepsilon$
Ce qui équivaut à :
$\forall \varepsilon > 0, \ \exists \ N \in IN \ tel \ que \ \forall n \ge N, \ \sup_{x \in D} s_n(x) - s(x) < \varepsilon$

Exemples

✓	Soit $(s_n)_{n\in\mathbb{N}}$ la suite de fonctions définie par : $s_n(x) = x^n$ $x \in \mathbb{R}$. Soit D=[-a,a] où 0 <a<1. <math="" montrer="" que="">(s_n) converge uniformément vers s=0 sur D.</a<1.>

<u>Proposition</u> La suite $(s_n)_{n\in\mathbb{N}}$ converge uniformément vers s sur D si et seulement si

 $\lim_{n\to\infty} \left(\sup_{x\in D} \left| s_n(x) - s(x) \right| \right) = 0$

Soit $(s_n)_{n \in \mathbb{N}^*}$ la suite de fonctions définie par : $s_n(x) = \begin{cases} nx & \text{si } 0 \le x \le \frac{1}{n} \\ n\left(\frac{2}{n} - x\right) \text{ si } \frac{1}{n} \le x \le \frac{2}{n} & \text{pour } n \ge 2 \text{ et } x \in [0;1]. \text{ Etudier la convergence} \\ 0 & \text{si } \frac{2}{n} \le x \le 1 \end{cases}$ uniforme de cette suite sur $[0:1]$
uniforme de cette suite sur [0 ;1]
Soit $(s_n)_{n\in\mathbb{N}}$ la suite de fonctions définie par : $s_n(x) = \frac{x\sqrt{n}}{1+nx^2}$, $x \in \mathbb{R}$. Etudier la convergence uniforme de cette suite sur \mathbb{R} .

Chapitre 5 : Suites de fonctions
3) Convergence compacte
<u>Définition</u> On dit que la suite $(s_n)_{n \in IN}$ converge compactement sur D vers s, si la suite (s_n) converge uniformément vers s sur tout intervalle fermé de D.
Implications entre les types de convergence
$C.U \Rightarrow C.C \Rightarrow C.S$
II. <u>Limite d'une suite de fonctions continues</u> :
1) Exemple
La suite de fonctions $(s_n)_{n \in IN}$ continues sur $[0;1]$ définie par : $s_n(x) = x^n$ converge simplement vers la fonction : $s(x) = \begin{cases} 0 & \text{si } x \in [0;1[\\ 1 & \text{si } x = 1 \end{cases}$ qui n'est pas continue sur $[0;1]$
2) <u>Théorème</u>
Soit $(s_n)_{n\in IN}$, une suite de fonctions continues sur un ouvert D. Si la suite (s_n) converge compactement sur D vers s, alors s est continue sur D.
Remarques importantes
 ✓ Si la suite (s_n) converge uniformément sur D vers s, alors s est continue sur D. ✓ Contraposée : Si la suite (s_n) converge simplement sur D vers s, et si s n'est pas continue sur D, alors la suite (s_n) ne converge pas uniformément sur D.
Exemple Soit $(s_n)_{n \in IN^*}$ la suite de fonctions définie par : $s_n(x) = (x^2 + n^{-2})^{1/2}$ pour $x \in \mathbb{R}$.

Chapitre 5 : Suites de fonctions
III. <u>Limite d'une suite de fonctions dérivables</u> :
1) Exemple
Soit $(s_n)_{n \in \mathbb{N}^*}$ la suite de fonctions définie par : $s_n(x) = \frac{\sin nx}{n}$ est dérivable sur \mathbb{R} .
Etudier la convergence uniforme de cette suite, que dire de la suite des dérivées ?

2) Théorème

Soit $(s_n)_{n\in IN}$, une suite de fonctions dérivables sur un ouvert D, qui converge simplement vers une fonction s. Si la suite des dérivées (s'_n) converge compactement sur D, alors s est dérivable sur D, et on a : $s' = \lim_{n \to \infty} s'_n$

C'est-à-dire:
$$\lim_{x \to x_0} \lim_{n \to \infty} \frac{s_n(x) - s_n(x_0)}{x - x_0} = \lim_{n \to \infty} \lim_{x \to x_0} \frac{s_n(x) - s_n(x_0)}{x - x_0}$$

Remarques importantes

- ✓ Si la suite (s'_n) converge uniformément sur D, alors s est dérivable sur D.
- ✓ Contraposée : Si la suite (s_n) converge simplement sur D vers s, et si s n'est pas dérivable sur D, alors la suite (s'_n) ne converge pas uniformément sur D.

IV. Limite d'une suite de fonctions intégrables :

1) Théorème

Soit $(s_n)_{n\in IN}$, une suite de fonctions intégrables sur [a,b], qui converge uniformément sur [a,b] vers une fonction s ; alors s est intégrable sur [a,b] et on a :

$$\int_{a}^{b} \lim_{n \to \infty} s_{n}(x) dx = \lim_{n \to \infty} \int_{a}^{b} s_{n}(x) dx$$

Remarque importante Si la suite (s_n) est une suite de fonctions continues sur [a,b] qui converge uniformément sur [a,b] vers s, alors s est intégrable sur [a,b].

2) Exemple Soit $(s_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie par :

$$s_{n}(x) = \begin{cases} n^{2}x & \text{si } 0 \leq x \leq \frac{1}{n} \\ n^{2}\left(\frac{2}{n} - x\right) \text{ si } \frac{1}{n} \leq x \leq \frac{2}{n} & \text{pour } x \in [0;1] \\ 0 & \text{si } \frac{2}{n} \leq x \leq 1 \end{cases}$$

Calculer $\int_{0}^{1} \lim_{n \to \infty} s_n(x) dx$ et $\lim_{n \to \infty} \int_{0}^{1} s_n(x) dx$. Que peut-on en déduire ?

Chapitre 5: Suites de fonctions

Chapitre 5 : Suites de fonctions

Chapitre 5 : Suites de fonctions