Chapitre 8 : Séries entières

I. Etude d'une série entière :

1) Définition

On appelle série entière, toute série de fonctions de terme général $U_n(x) = a_n \cdot x^n$ où (a_n) est une suite de nombres réels ou complexes et x est une variable réelle ou complexe.

Remarque Si x=0, alors u_n =0 et la série $\sum_{n=0}^{\infty} u_n$ converge.

2) Domaine de convergence.

Théorème d'Abel : Pour toute série entière $\sum_{n=n_0}^{\infty} a_n \cdot x^n$ il existe un réel R>0 tel que :

-
$$\sum_{n=n_0}^{\infty} a_n . x^n$$
 converge absolument si $|x| < R$

$$-\sum_{n=n_0}^{\infty} a_n . x^n \text{ diverge si } |x| > R$$

R est appelé le rayon de convergence de la série $\sum_{n=n_0}^{\infty} a_n \cdot x^n$

Le domaine de convergence de $\sum_{n=n_0}^{\infty} a_n \cdot x^n$ est alors un des quatre intervalles :

[-R,R], [-R,R[, -R,R[, -R,R]], si x est un réel, ou bien D(0,R) un disque de centre 0 et de rayon R, avec ou sans points sur le cercle C(0,R), si x est un complexe.

$$\underline{Remarques} \hspace{1cm} Si \hspace{0.1cm} R = \infty \hspace{0.1cm}, \hspace{0.1cm} alors \hspace{0.1cm} D_c = \hspace{0.1cm} \mathbb{R} \hspace{0.1cm} ou \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} Si \hspace{0.1cm} R = 0, \hspace{0.1cm} alors \hspace{0.1cm} D_c = \hspace{0.1cm} \big\{ \hspace{0.1cm} 0 \big\}$$

3) Détermination du rayon de convergence de la série entière $\sum_{n=n_0}^{\infty} a_n . x^n$

Critère de D'Alembert : Si
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$
, alors
$$\begin{cases} R = \frac{1}{L} \text{ si } L \neq 0 \\ R = \infty \text{ si } L = 0 \end{cases}$$

$$R = 0 \text{ si } L = \infty$$
Critère de Cauchy : Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$, alors
$$\begin{cases} R = \frac{1}{L} \text{ si } L \neq 0 \\ R = \infty \text{ si } L = 0 \end{cases}$$

$$R = 0 \text{ si } L = \infty$$

ISEN Toulon – U3X3

II. Convergence uniforme et continuité :

1) Continuité

Toute série entière de rayon de convergence R converge uniformément sur tout compact de -R,R ou de D(0,R)

Comme les fonctions Un sont continues, il en est alors de même pour S la fonction définie

par:
$$S(x) = \sum_{n=n_0}^{\infty} a_n . x^n \quad \forall |x| < R.$$

2) Théorème des zéros isolés

Soit
$$\sum_{n=n_0}^{\infty} a_n . x^n$$
, une série entière de rayon de convergence R et de somme $f(x)$.

Si les coefficients an ne sont pas tous nuls, alors il existe un réel r avec 0<r<R, tel que :

$$0 < |\mathbf{x}| < \mathbf{r} \implies \mathbf{f}(\mathbf{x}) \neq 0$$

Conséquence

Soient $\sum_{n=n_0}^{\infty} a_n . x^n$ et $\sum_{n=n_0}^{\infty} b_n . x^n$, deux séries entières de même rayon de convergence R, et

qui ont pour sommes respectives f et g:

$$\forall |\mathbf{x}| < \mathbf{R}, \mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{x}) \Rightarrow \forall \mathbf{n}, \mathbf{a}_{\mathbf{n}} = \mathbf{b}_{\mathbf{n}}$$

III. Opérations sur les séries entières :

1) Multiplication par un scalaire

Théorème : Soit la série entière $\sum_{n=n}^{\infty} a_n \cdot x^n$ de rayon de convergence R, de somme f(x), et

une constante $\lambda \neq 0$. On démontre que la série entière $\sum_{n=n}^{\infty} \lambda a_n . x^n$ a un rayon de

convergence égal à R, et pour somme λ f(x).

2) Addition et multiplication

Théorème : Soient $\sum_{n=n_n}^{\infty} a_n . x^n$ et $\sum_{n=n_n}^{\infty} b_n . x^n$, deux séries entières de rayon de convergence

respectifs R₁ et R₂ et de sommes respectives f et g :

- La série entière $\sum_{n=n_0}^{\infty} (a_n + b_n) \cdot x^n$ a pour rayon de convergence

$$R = \begin{cases} \inf(R_1, R_2) & \text{si } R_1 \neq R_2 \\ \geq R_1 & \text{si } R_1 = R_2 \end{cases} \text{ et pour somme } f(x) + g(x) & \text{si } |x| < \inf(R_1, R_2).$$

ISEN Toulon - U3X3 2 - La série entière $\sum_{n=n_0}^{\infty} \left(\sum_{i+j=n} a_i b_j \right) x^n$ a pour rayon de convergence $R \ge \inf(R_1, R_2)$ et pour somme $f(x) \times g(x)$ si $|x| < \inf(R_1, R_2)$.

3) Dérivation, intégration

Théorème : Soit la série entière $\sum_{n=n_0}^{\infty} a_n . x^n$ de rayon de convergence R, de somme f(x). On démontre que la série entière $\sum_{n=n_0}^{\infty} n(n-1)...(n-p+1)a_n . x^{n-p}$ a un rayon de convergence égal à R, et pour somme $f^{(p)}(x)$ si |x| < R

Théorème : Soit la série entière $\sum_{n=n_0}^{\infty} a_n . x^n$ de rayon de convergence R, de somme f(x). On démontre que la série entière $\sum_{n=n_0}^{\infty} a_n . \frac{x^{n+1}}{n+1}$ a un rayon de convergence égal à R, et pour somme F(x) si |x| < R, où F est la primitive de f qui s'annule pour x=0.

IV. Développement en série entière d'une fonction f(x)

Etant donné une fonction f, supposons qu'il existe une série entière $\sum_{n=0}^{\infty} a_n.x^n$, de rayon de convergence $R \neq 0$, telle que: $\forall |x| < R$, $f(x) = \sum_{n=0}^{\infty} a_n.x^n$, alors, d'après la remarque précédente: $\forall |x| < R$ $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}.x^n$

Cette série est appelée développement en série entière de la fonction f au voisinage de zéro. Elle est unique.

<u>Conséquence</u> Si f est une fonction paire, son développement ne contient que des puissances paires. Si f est une fonction impaire, il ne contient que des puissances impaires.

1) Développement au moyen de la formule de Mac Laurin

<u>Série de Mac-Laurin</u> Si f, une fonction infiniment dérivable sur un intervalle]-R ;R[, est telle qu'il existe un réel A>0 avec : $\forall n \in IN, \forall x \in$]-R;R[$|f^{(n)}(x)| < A$, alors f admet un développement en série entière de rayon de convergence au moins égal à R.

ISEN Toulon – U3X3

et on obtient alors : $\forall |x| < R \quad f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}.x^n$

<u>Exemple</u>
$f(x)=e^x:$
f(x)=sinx:
2) <u>Développement au moyen d'une dérivation</u>
$f(x)=\cos(x)$:
3) <u>Développement au moyen d'une intégration, division, changement de variable, combinaison linéaire, équation différentielle</u>
Exemples: $\frac{1}{1-x}$, e^{-x} , chx, $\ln(1-x)$, $\frac{1}{(1-x)^2}$, $(1+x)^{\alpha}$

4) Développement en série entière et développement limité

Supposons que $\forall |x| < R$, $f(x) = \sum_{n=0}^{\infty} a_n.x^n$, on démontre alors que quel que soit n, il existe une fonction $\epsilon(x)$ tendant vers $\epsilon(0) = 0$ quand x tend vers 0, telle que $\forall |x| < R$, $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n + x^n\epsilon(x)$.

IV. Exercices

<u>Exercice 1</u>: Déterminer le rayon de convergence R et vérifier s'il y a convergence aux extrémités de l'intervalle de convergence lorsque R est fini.

$$\sum_{n=0}^{+\infty} \frac{x^n}{n^{\alpha}} \text{ avec } \alpha \geq 0. \qquad \sum_{n=1}^{+\infty} (1+\frac{1}{n})^n x^n \qquad \sum_{n=1}^{+\infty} n^n x^n \qquad \sum_{n=1}^{+\infty} \frac{x^n}{2n^2-n} \qquad \sum_{n=0}^{+\infty} \frac{(x+3)^n}{(n+1)2^n}$$

Exercice 2 : Déterminer le rayon de convergence et la somme des séries suivantes :

$$\sum_{n=0}^{+\infty} \frac{(-x)^n}{3^n} \qquad \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+2)!} \qquad \sum_{n=0}^{+\infty} (-1)^n \frac{x^n}{2n+1} \qquad \sum_{n=0}^{+\infty} n^2 x^n$$

Exercice 3 : Développer en série entière les fonctions :

$$f(x) = \frac{1}{(1-x)^2}$$
 $f(x) = \frac{x^2}{(x+1)(x-2)}$ $f(x) = \cos^2 x$ $f(x) = \int_0^x \frac{\sin t}{t} dt$

Exercice 4 : Soit une série entière $y = \sum_{n=0}^{+\infty} a_n x^n$ solution de l'équation différentielle :

$$4xy''+2y'-y=0$$
 telle que $y(0)=1$.

Déterminer a₀ et montrer que les coefficients de la série vérifient la relation récurrente :

$$a_n = \frac{a_{n-1}}{2n(2n-1)}$$
. En déduire y=y(x).

ISEN Toulon – U3X3