

UNIVERSITE DE TOULON

IUT DE TOULON

DEPARTEMENT GEII

Cours de Mathématiques

Chapitre 1 : Programme de l'année Quelques notions indispensables pour bien démarrer ses études en GEII.

Enseignante: Sylvia Le Beux sylvia.lebeux@univ-tln.fr
Bureau A042 - 04 94 14 21 15
http://moodle.univ-tln.fr/course/view.php?id=527

Table des matières

Programme de mathématiques des semestres 1 et 2	5
Bibliographie	6
Partie A : Calculs de base	8
Exercices	11
Partie B : Trigonométrie	12
Exercices	20
Partie C : Nombres complexes	23
Exercices	28
Partie D : Equations différentielles Linéaires du 1 ^{er} ordre à coefficients constants	32
Exercices	39
Partie E : Exercices d'entraînement pour les poursuites d'études longues	40
Alphabet grec	44

Programme de l'année 2020 - 2021

	MA1 : Fondamentaux	10 ^H CM 20 ^H TD 12 ^H TP	Test / QCM coeff (0.5) 2 DS coeff (2*0.75)				
SEMESTRE 1	Chap.1: Notions indispensables pour le GEII (calculs algébriques, équations de droite, équation du second degré, trigonométrie, dérivées, primitives et intégrale de fonctions trigonométriques, nombres complexes, équations différentielles du premiordre à coefficients constants.)						
S	Chap.2 : Polynômes (factorisation da fractions rationnelles (décomposition transformation de Laplace.						
	MA2 : Fondamentaux	15 ^H CM 30 ^H TD	Test / QCM coeff (1) 2 DS coeff (2*1)				
SEMESTRE 2	Chap.3: Approfondissement sur les hyperboliques), limites, équivalents, é réciproques. Fonctions réciproques. Chap.4: Approfondissement du calculation de la companie de l	étude complète d'u ul intégral (IPP, c	nne fonction, fonctions hangement de variable, parité,				
SE	périodicité, calcul de coefficients de I généralisées (application : transformé Chap.5 : Equations différentielles lin coefficients constants.	es de Laplace de s	signaux usuels)				

Coordonnées

Mail: <u>sylvia.lebeux@univ-tln.fr</u> Bureau: Bâtiment A – 1^{er} étage – A042. Responsable des poursuites d'études: <u>http://moodle.univ-tln.fr/course/view.php?id=573</u>

Bibliographie

Pour les étudiants issus d'un BAC Pro:

Maths - contrôle continu en première STI2D (côte BU: 510.71 PRE et magasin GEII) Maths - contrôle continu en terminale STI2D (côte BU: 510.71 PREet magasin GEII)

Pour les étudiants souhaitant s'entraîner et progresser :

Mathématiques en modules - Tome 1 - bases fondamentales DUT et BTS industriels auteur: C.Larcher - édition CASTELLA

Magasin GEII

Remarques : Résumé/rappel de cours de terminale et DUT et exercices très basiques appliqués au GEII corrigés.

Maths BTS-DUT industriels - édition Techno + - auteurs C.Larcher

Côte BU: 510 LAR

Remarques : Résumé de cours et exercices très appliqués au GEII corrigés.

Pour les étudiants souhaitant suivre de longues études :

Cours DUT/BTS: édition: Ellipses – auteur: P. Variot

Côte BU:510 VAR

Remarques: Cours DUT d'un très bon niveau, tout le programme du DUT y est traité et plus.

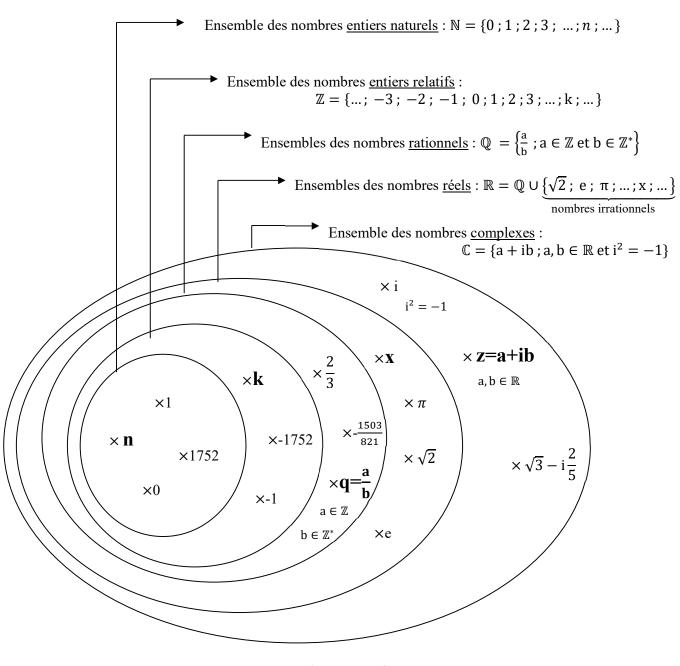
L'épreuve de mathématiques au concours ENSEA - édition : CASTELLA - auteurs : Lièvre - Mazoyer

ISBN: 978 2 7135 2846 0 à la BU.

Remarques : Résumé de cours très clair et sujets de concours corrigés

intégralement.

Partie A : Calculs de base à connaître par cœur et à maîtriser



$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Ensemble des entiers naturels pairs : $\{0; 2; 4; 6; ...; 2n \text{ où } n \in \mathbb{N}; ...\}$

Ensemble des entiers naturels impairs : $\{1; 3; 5; 7; ...; 2n + 1 \text{ où } n \in \mathbb{N}; ...\}$

Ensemble des entiers relatifs pairs : $\{...; -6; -4; -2; 0; 2; 4; 6; ...; 2k \text{ où } k \in \mathbb{Z}; ...\}$

Ensemble des entiers relatifs impairs : $\{...; -5; -3; -1; 1; 3; 5; 7; ...; 2k + 1 \text{ où } k \in \mathbb{Z}; ...\}$

Chapitre 1 : Les notions indispensables pour le GEII – A. Calculs de base

$\underbrace{a \times a \times \times a}_{\text{n facteurs}} = a^{\text{n}}$	$\frac{1}{a^n} = a^{-n}$ $a \neq 0$	$a^0 = 1$	$a^{m} \times a^{n} = a^{m+n}$
$\left(a^{m}\right)^{n}=a^{m\times n}$	$\frac{a^{m}}{a^{n}} = a^{m-n}$ $a \neq 0$	$(ab)^n = a^n b^n$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ $b \neq 0$
$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$ $b \neq 0$	$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$ $b \neq 0 \text{ et } d \neq 0$	$\frac{1}{\frac{a}{b}} = \frac{b}{a}$ $b \neq 0 \text{ et } a \neq 0$	$\frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$ $\frac{d}{d}$ $b \neq 0, c \neq 0 \text{ et } d \neq 0$ $ax + b \leq 0$
$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$ $b \neq 0 \text{ et } d \neq 0$	$\frac{ab}{cb} = \frac{a}{c}$ $b \neq 0, c \neq 0$	$ax + b = 0 \Leftrightarrow x = -\frac{b}{a}$ $a \neq 0$	$ax + b \le 0$ $\Leftrightarrow \begin{cases} x \le -\frac{b}{a} si \ a > 0 \\ x \ge -\frac{b}{a} si \ a < 0 \end{cases}$
Soit $x \ge 0$, $\sqrt{x} = x^{\frac{1}{2}}$	Soit $x \ge 0$, $ (\sqrt{x})^2 = \sqrt{x} \sqrt{x} = x $	Soit $a \ge 0$, $\sqrt{a^2} = a$	Soit $a \le 0$, $\sqrt{a^2} = -a$
$\sqrt{a^2} = \begin{cases} a \operatorname{si} a \ge 0 \\ -a \operatorname{si} a \le 0 \end{cases} = a $	Soit a>0, $\frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{\sqrt{a}\sqrt{a}} = \frac{\sqrt{a}}{a}$	$(\sqrt{x} + \sqrt{y})^2 = x + 2\sqrt{x}.\sqrt{y} + y$ $x \ge 0, y \ge 0$	$(\sqrt{x} - \sqrt{y})^2 = x - 2\sqrt{x} \cdot \sqrt{y} + y$ Si $x \ge 0$, $y \ge 0$
$(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}) = x-y$ $x \ge 0, y \ge 0$	$\frac{1}{\sqrt{x} + \sqrt{y}} = \frac{\sqrt{x} - \sqrt{y}}{x - y}$ $x \ge 0, y \ge 0, x \ne y$	$ \sqrt{ab} = \sqrt{a}\sqrt{b} $ $ a \ge 0, b \ge 0 $	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a \ge 0, b > 0$
Soit x, un nombre positif et n u	on entier naturel non nul, la racine n $y^n = \frac{1}{2}$		e nombre réel positif y tel que
$a^{2} + 2ab + b^{2} = (a + b)^{2}$ $on factorise$ $on développe$	$a^{2} - 2ab + b^{2} = (a - b)^{2}$ on factorise on développe	$a^{2} - b^{2} = (a - b)(a + b)$ on factorise on développe	$a^{2} + b^{2} = (a - ib)(a + ib)$ on factorise on développe $(i^{2} = -1)$
$a^3 + 3a^2b + 3ab$	$b^2 + b^3 = (a + b)^3$	$a^3 - 3a^2b + 3ab$	$b^2 - b^3 = (a - b)^3$

 $\underline{Factorisation\ et\ signe\ de}\ P(x) = ax^2 + bx + c\ avec\ a \neq 0: on\ r\acute{e}sout\ P(x) = 0. \ On\ calcule\ le\ discriminant\ \Delta = b^2 - 4ac$

- Si $\Delta > 0$, P possède deux racines réelles : $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$, alors $P(x) = a(x x_1)(x x_2)$ est la factorisation de P. "P(x) est du signe de -a entre les racines ".
- Si $\Delta=0$, P possède une racine réelle double : $x_1=\frac{-b}{2a}$, alors $P(x)=a(x-x_1)^2$ est la factorisation de P. P(x) est du signe de a.
- Si $\Delta < 0$, P possède deux racines complexes conjuguées : $z_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$ et $z_2 = \frac{-b i\sqrt{|\Delta|}}{2a}$, alors $P(x) = a(x z_1)(x z_2)$ est la factorisation de P dans \mathbb{C} . P est du signe de a.

Remarque: Soit $P(x) = x^2 - s \cdot x + p$. x_1 et x_2 , les racines de P vérifient alors le système suivant : $\begin{cases} s = x_1 + x_2 \\ p = x_1 \times x_2 \end{cases}$

Factoriel d'un entier naturel Soit n, un entier naturel non nul, on appelle factoriel de n et on note n!, le produit des n premiers entiers naturels : $n! = 1 \times 2 \times 3 \times ... \times n$ Par convention 0! = 1.

Exemple: 1! = 1; 2! = 2; 3! = 6; 4! = 24; 5! = 120 etc...

On remarque que $4! = 4 \times 3!$ ou encore que $5! = 5 \times 4!$, plus généralement : $n! = n \times (n-1)!$

Proportionnalité Deux grandeurs X et Y non nulles sont proportionnelles, lorsqu'il existe un réel k non nul tel que :

Valeurs de X	Valeurs de Y
$\mathbf{x_1}$	y_1
X_2	y ₂
X _n	y_n
	2
×	k

$$y_1 = k. x_1 y_2 = k. x_2 ... y_n = k. x_n$$
 se note aussi $\forall i \in \{1, 2, ..., n\}$ $y_i = k. x_i$

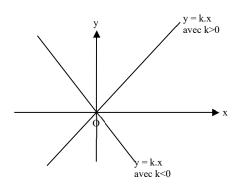
= k.x_n)
On a donc aussi :
$$\frac{y_1}{x_1} = \frac{y_2}{x_2} = \dots = \frac{y_n}{x_n} = k$$

Ou encore : $x_1y_2 = x_2y_1$ etc...

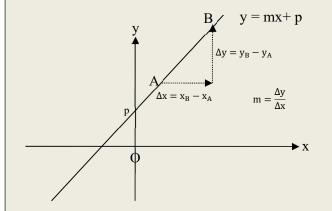
En pratique, sachant que X et Y sont deux grandeurs proportionnelles, ne connaissant pas k, le coefficient de proportionnalité,

La fonction f, définie par : f(x) = k.x est appelée fonction linéaire. Sa représentation graphique est la droite passant par O, l'origine du repère et ayant pour coefficient directeur (pente) k.

On obtient x en résolvant l'équation : $x_1y = xy_1 \Leftrightarrow x = \frac{x_1\hat{y}}{y_1}$



Equation (réduite) de la droite (AB) y = m.x + p où m est le coefficient directeur (la pente) de (AB) et p est l'ordonnée à l'origine.



<u>Calcul de la pente m</u> : Si on connaît les coordonnées de A et B : $m = \frac{y_B - y_A}{x_B - x_A} (A \neq B)$

Calcul de l'ordonnée à l'origine p :

Si on connaît le point Q, intersection de (AB) et de l'axe des ordonnées, on en déduit facilement $p = y_0$, sinon, on résout l'équation : $y_A = m. x_A + p$ (en effet, $A \in (AB)$), et

on obtient : $p = y_A - m. x_A$

Remarques: - Δy et Δx sont proportionnels, puisque $\Delta y = m \cdot \Delta x$ - La fonction f, définie par : f(x) = m.x + p est appelée fonction affine. Sa représentation graphique est la droite passant par le point (0; p), et ayant pour coefficient directeur (pente) m.

Implication et équivalence par l'exemple

Implication : $x = 3 \Rightarrow x^2 = 9$, mais la réciproque est fausse : $x = 3 \Leftrightarrow x^2 = 9$

Equivalence : x = 3 ou $-3 \Rightarrow x^2 = 9$, et la réciproque est vraie : x = 3 ou $-3 \Leftrightarrow x^2 = 9$. On écrit alors : x = 3 ou $-3 \Leftrightarrow x^2 = 9$ ou encore : $x^2 = 9 \Leftrightarrow x = 3$ ou -3 qui est une équivalence.

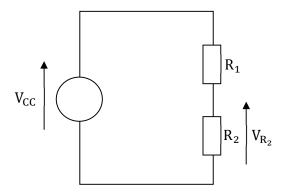
Exercices d'application au GEII

Exercice 1 Deux résistances sont associées en parallèle, alors, on obtient la relation suivante, où R_e est la résistance équivalente : $\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2}$.

Montrer que R_e est égale au quotient du produit des deux résistances par leur somme.

Exercice 2 Pont diviseur de tension

Soit V_{CC}, la tension aux bornes du générateur, et V_{R2}, la tension aux bornes de la résistance R_2 . On obtient alors la relation suivante : $V_{R_2} = V_{CC} \cdot \frac{R_2}{R_2 + R_1}$.



- 1) Exprimer V_{CC} en fonction de R_1 , R_2 et V_{R_2} .
- 2) On souhaite obtenir V_{R_2} = 2 V. Quelle valeur donner à R_2 , sachant que R_1 = 1 k Ω et V_{CC} = 5 V? Etablir d'abord l'expression littérale puis faire l'application numérique.

Exercice 3 Convertisseur Température / Tension.

Une interface convertit la température T en °C en tension U en Volt. La gamme de températures en entrée est (10°C - 40°C) et la gamme de tensions en sortie est (0 V - 10 V). (A 10°C on obtient 0 V en sortie, et à 40°C on obtient 10 V en sortie)

- 1) Si la température en entrée est de 25°C, quelle est la tension de sortie ?
- 2) Si la tension de sortie est de 3V, quelle est la température à l'entrée ?
- 3) Soit T, la température à l'entrée et U, la tension de sortie, exprimer U en fonction de T, puis représenter les variations de U en fonction de T.
- 4) En déduire l'expression de T en fonction de U.

Exercice 4 Résistances équivalentes

Soit r, une résistance (strictement positive) telle que : $r = 10\Omega$.

- 1) Déterminer la résistance positive x telle que : $r + \frac{rx}{r+x} = x$ 2) Déterminer la résistance positive x telle que : $r + \frac{rx}{r+x} \ge x$.

Partie B: Trigonométrie: Définitions, propriétés et formulaire

Dans un repère orthonormé (O ; \overrightarrow{OI} , \overrightarrow{OJ}), on appelle cercle trigonométrique le cercle orienté de centre O et de rayon 1. Sur ce cercle, on définit une origine I et deux sens : le sens direct (ou positif), est le sens inverse des aiguilles d'une montre ; et le sens indirect (ou négatif), est le sens des aiguilles d'une montre.

La longueur d'un cercle de rayon R est : $L=2\pi R$, la longueur du cercle trigonométrique est donc 2π .

Soit M, un point sur le cercle trigonométrique. On note θ une mesure en radians de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$ $\theta + 2k\pi o \hat{\mathbf{u}} k \epsilon \mathbb{Z}$, sont donc aussi des mesures de ce dernier, on les appelle encore θ modulo 2π

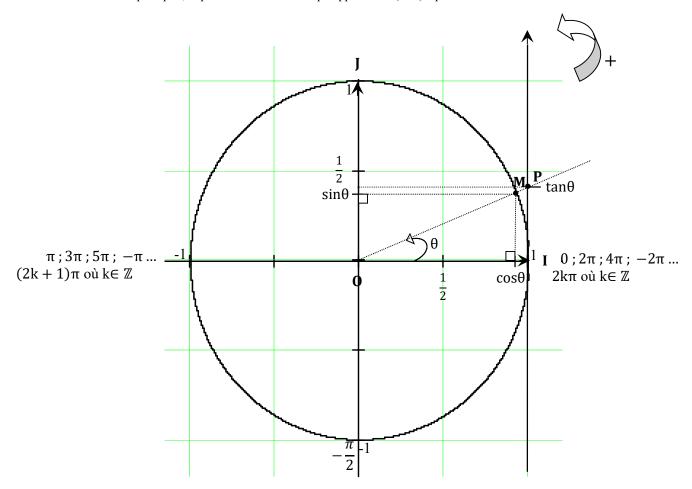
On appelle **mesure principale** de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$ l'unique mesure appartenant à l'intervalle $]-\pi, \pi]$

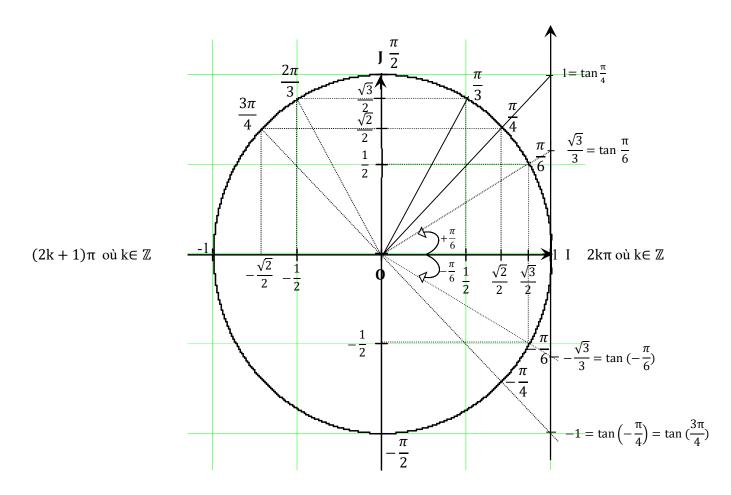
On appelle **cosinus** de l'angle orienté θ , **l'abscisse du point M** dans le repère $(O; \overrightarrow{OI}, \overrightarrow{OJ})$ On appelle **sinus** de l'angle orienté θ , **l'ordonnée du point M** dans le repère $(O; \overrightarrow{OI}, \overrightarrow{OJ})$ On obtient donc : $\overrightarrow{OM} = \mathbf{cos}\theta$. $\overrightarrow{OI} + \mathbf{sin}\theta$. \overrightarrow{OJ}

Soit Δ , la droite parallèle à l'axe des ordonnées, passant par le point I. Soit P, le point d'intersection des droites (OM) et Δ .

On appelle **tangente** de l'angle orienté θ , et on note $\tan(\theta)$, **l'ordonnée du point P** dans le repère $(O; \overrightarrow{OI}, \overrightarrow{OJ})$. On reportera cette dernière sur la droite Δ .

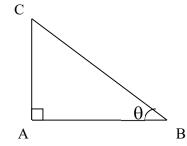
Remarque: $\frac{y_M - y_0}{x_M - x_0} = \frac{\sin \theta}{\cos \theta} = \tan \theta$ est la pente de la droite (OM) qui a donc pour équation : y = x. $\tan \theta$ Voilà pourquoi, le point P d'abscisse 1 et qui appartient à (OM) a pour ordonnée $\tan \theta$.





θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
tan θ	0	$\sqrt{3}/3$	1	$\sqrt{3}$	Impossible

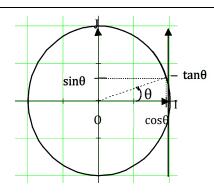
ABC est un triangle rectangle en A, et B est aigüe.



$$cos(\theta) = \frac{Côté \text{ adjacent}}{Hypothénuse} = \frac{AB}{BC}$$

$$sin(\theta) = \frac{Côté opposé}{Hypothénuse} = \frac{AC}{BC}$$

$$tan(\theta) = \frac{\text{Côt\'e oppos\'e}}{\text{Côt\'e adjacent}} = \frac{\text{AC}}{\text{AB}} = \frac{\sin{(\theta)}}{\cos{(\theta)}}$$



$$cos(\theta + 2\pi) = cos(\theta)$$

 $cos(\theta + 2k\pi) = cos\theta$ où $k \in \mathbb{Z}$

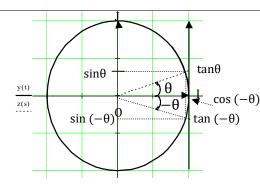
$$\sin(\theta + 2\pi) = \sin(\theta)$$

 $\sin(\theta + 2k\pi) = \sin\theta$ où $k \in \mathbb{Z}$

$$tan(\theta + 2\pi) = tan(\theta)$$

 $tan(\theta + 2k\pi) = tan\theta \text{ où } ke\mathbb{Z}$

Les fonctions cosinus et sinus sont 2π -périodiques

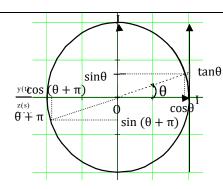


$$\cos(-\theta) = \cos(\theta)$$

$$\frac{1}{4}\cos(-\theta)\sin(-\theta) = -\sin(\theta)$$

$$tan(-\theta) = -tan(\theta)$$

La fonction cosinus est paire, les fonctions sinus et tangente sont impaires



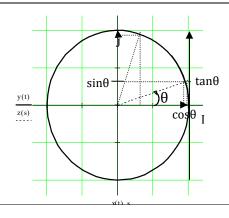
$$\cos(\theta + \pi) = -\cos(\theta)$$

$$\sin(\theta + \pi) = -\sin(\theta)$$

$$\tan(\theta + \pi) = \tan(\theta)$$

$$tan(\theta + k\pi) = tan\theta où k\in \mathbb{Z}$$

La fonction tangente est π-périodique



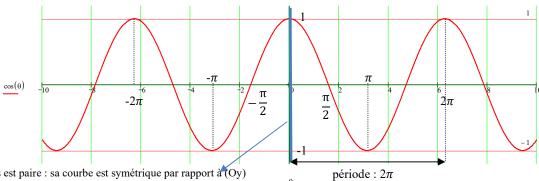
$$\cos(\frac{\pi}{2} - \theta) = \dots$$

$$\sin(\frac{\pi}{2}-\theta) = \dots$$

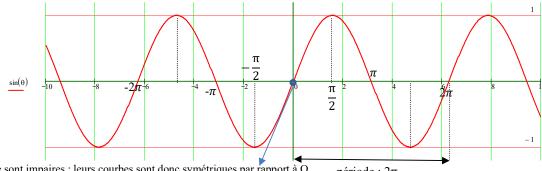
$$\tan(\frac{\pi}{2}-\theta) = \dots$$

Encadrement de cosinus et sinus : $\forall \theta \in \mathbb{R} -1 \le \cos(\theta) \le 1$ et $-1 \le \sin(\theta) \le 1$

Représentation graphique des fonctions cosinus, sinus et tangente :

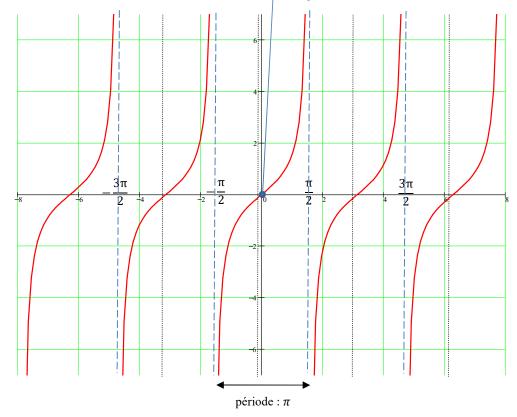


Cosinus est paire : sa courbe est symétrique par rapport à (Oy)



Sinus et tangente sont impaires : leurs courbes sont donc symétriques par rapport à O

période : 2π

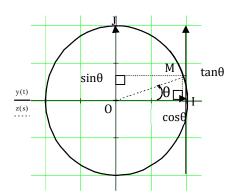


Formulaire à connaître par cœur

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

$$tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \ \forall \theta \neq \frac{\pi}{2} + k\pi \text{ où } k \in \mathbb{Z}$$

$$1 + \tan^2(\theta) = \frac{1}{\cos^2(\theta)} \ \forall \ \theta \neq \frac{\pi}{2} + k\pi \ où \ k \in \mathbb{Z}$$



$$cos(a+b) = cosa. cosb - sina. sinb$$

$$sin(a+b) = sina. cosb + cosa. sinb$$

$$cos(a-b) = cosa.cosb + sina.sinb$$

$$sin(a-b) = sina. cosb - cosa. sinb$$

$$\cos(2a) = \cos^2 a - \sin^2 a$$

$$\sin(2a) = 2.\cos a.\sin a$$

Formules de linéarisation : (Transformation d'un produit en somme)

$$\cos^2(a) = \frac{1 + \cos(2a)}{2}$$

$$\sin(a).\cos(b) = \frac{\sin(a+b) + \sin(a-b)}{2}$$

$$\sin^2(a) = \frac{1-\cos(2a)}{2}$$

$$\sin(a).\sin(b) = \frac{\cos(a-b)-\cos(a+b)}{2}$$

III (a) =
$$\frac{}{2}$$

$$\cos(a).\cos(b) = \frac{\cos(a-b) + \cos (a+b)}{2}$$

$$tan(a+b) = \frac{tana + tanb}{1 - tana.tanb}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b} \qquad \tan(2a) = \frac{2 \cdot \tan a}{1 - \tan^2 a}$$

$$\tan(2a) = \frac{2.\tan a}{1 - \tan^2 a}$$

<u>Dérivées</u>:

$$(\cos(x))' = -\sin(x)$$

$$(\cos(x))' = -\sin(x) \qquad (\cos(ax+b))' = -a.\sin(ax+b) \qquad (\cos(U))' = -U'.\sin(u)$$

$$(\cos(U))' = -U' \cdot \sin(u)$$

$$(\sin(x))' = \cos(x)$$

$$(\sin(x))' = \cos(x)$$
 $(\sin(ax + b))' = a \cdot \cos(ax + b)$ $(\sin(U))' = U' \cdot \cos(u)$

$$(\sin(U))' = U'.\cos(u)$$

$$(\tan(x))' = 1 + \tan^2(x) = \frac{1}{\cos^2(x)} \quad \forall \ x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$$

$$(\tan(ax+b))'=a.\left(1+\tan^2(ax+b)\right)=\frac{a}{\cos^2(ax+b)} \ \ \forall \ ax+b\neq \frac{\pi}{2}+k\pi \ ; k\in \mathbb{Z}$$

Primitives de
$$\sin(ax+b)$$
: $-\frac{1}{a}\cos(ax+b)$ + Cte $(a \ne 0)$

Primitives de
$$U'.\sin(U)$$
: $-\cos(U)$ + Cte

Primitives de cos (ax+b):
$$\frac{1}{a}$$
sin (ax + b) + Cte (a \neq 0)

Primitives de
$$\frac{1}{\cos^2(ax+b)} = 1 + \tan^2(ax+b) : \frac{1}{a}\tan(ax+b) + \text{Cte}(a \neq 0)$$

Primitives de
$$\frac{U'}{\cos^2(U)} = U' \cdot (1 + \tan^2(U)) : \tan(u) + \text{Cte}$$

Etude des signaux trigonométriques

$$\begin{array}{cc} sin & : \mathbb{R} \to [-1,1] \\ & \theta \mapsto sin\theta \end{array}$$

$$\cos : \mathbb{R} \to [-1,1]$$

 $\theta \mapsto \cos\theta$

$$\begin{array}{ccc} \cos & : \mathbb{R} \to [-1,1] \\ & \theta & \mapsto \cos \theta \end{array} \qquad \text{tan} \quad : \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \epsilon \mathbb{Z} \right\} \to \mathbb{R}$$

Période, fréquence, pulsation, amplitude, déphasage

Les fonctions sinus et cosinus sont 2π -périodiques, et la fonction tangente est π -périodique

En effet, on a vu que : $\cos(\theta + 2\pi) = \cos\theta$; $\sin(\theta + 2\pi) = \sin\theta$ et $\tan(\theta + \pi) = \tan\theta$

Les fonctions $t\mapsto sin(\omega t+\phi)$ et $t\mapsto cos(\omega t+\phi)$ sont périodiques de <u>période</u> : $T=\frac{2\pi}{\omega}$ où $\omega\neq 0$ En effet, $sin(\omega(t+T)+\phi)=sin(\omega t+\omega T+\phi)=sin(\omega t+\phi+2\pi)=sin(\omega t+\phi)$

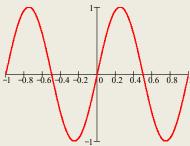
La fréquence f d'une fonction T-périodique est le nombre de motifs par unité de temps (si la variable t représente le temps). Donc $f = \frac{1}{T}$. Si T est en seconde, alors **f est en s**⁻¹ ou en Hertz (Hz). Ainsi, $\mathbf{t} \mapsto \sin(\omega \mathbf{t} + \boldsymbol{\phi})$ a pour fréquence $\mathbf{f} = \frac{\omega}{2\pi}$

On peut également exprimer le rythme d'une fonction périodique par la notion de <u>pulsation</u> (ou fréquence angulaire) ω , exprimé en radians par seconde (rd/s)

 $t \mapsto A. \sin(\omega t + \varphi)$ a pour <u>amplitude |A|</u>

 $f_1:\ t\mapsto A_1sin(\omega t+\phi_1)\ et\ f_2:\ t\mapsto A_2sin(\omega t+\phi_2)\ sont\ en\ d\acute{e}phasage\ de\ \Delta\phi=\phi_2-\phi_1.$ Si $\Delta \phi > 0$ ($\Delta \phi < 0$), on dit que f_2 est en avance (retard) de phase par rapport à f_1 . Les signaux cosinus et sinus sont déphasés de $\frac{\pi}{2}$, en effet, $\cos \left(\theta - \frac{\pi}{2}\right) = \sin \theta$.

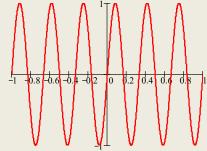
Représentations graphiques de quelques signaux trigonométriques



Fonction : $y = \sin(2\pi t)$

Période : T = 1 s

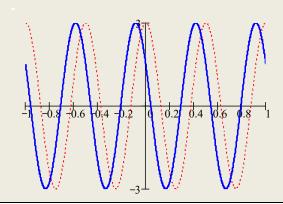
Fréquence : f = 1 Hz (1 motif sur 1 s)



Fonction : $y = \sin(6\pi t)$

Période : T = 1/3 s

Fréquence : f = 3 Hz (3 motifs sur 1s)



Fonction "trait pointillé" : $y = 3\cos(4\pi t)$ Fonction "trait continu": $y = 3\cos(4\pi t + \frac{\pi}{2})$

Période des signaux : T = 1/2 s

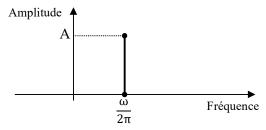
Fréquence des signaux : f = 2 Hz (2 motifs sur 1 s)

Amplitude des signaux : 3 (unités en ordonnée) Déphasage : $4\pi t + \frac{\pi}{3} - 4\pi t = \frac{\pi}{3}$ s

Spectre de signaux sinusoïdaux

Le spectre d'un signal est la représentation des amplitudes des différentes composantes présentes dans le signal en fonction de la fréquence.

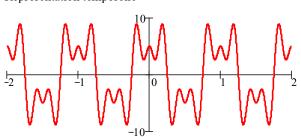
Spectre du signal sinusoïdal $x(t) = A \sin(\omega t + \varphi)$ (etdonc aussi du signal $x(t) = A \cos(\omega t + \varphi)$)



Le spectre d'une somme de sinusoïdes est la somme de leurs spectres.

Spectre du signal périodique $x(t) = 3\cos(10\pi t) + 6\sin\left(2\pi t + \frac{\pi}{2}\right) - 4\cos(6\pi t)$

Représentation temporelle



Amplitude 6 4 3 5 Fréquence

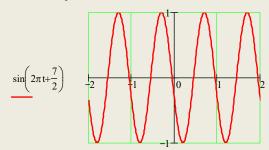
Valeur moyenne, valeur efficace d'un signal périodique

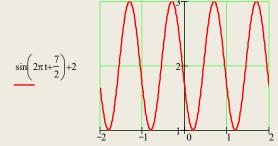
La **valeur moyenne** d'une fonction intégrable et T-périodique f, est la valeur donnée par : $\frac{1}{T} \int_a^{a+T} f(t) dt$ où a est un nombre réel quelconque. La **valeur efficace** de f est la racine carré de la valeur moyenne de f^2 : $\sqrt{\frac{1}{T}} \int_a^{a+T} f^2(t) dt$

<u>Rappel</u>: Si F est une fonction primitive de f (c'est à dire : F'(t) = f(t) \forall t), alors $\int_a^b f(t)dt = [F(t)]_a^b = F(b) - F(a)$

Valeur moyenne du sinus : $\frac{1}{T}\int_0^T \sin(\omega t + \phi)dt = \frac{1}{T\omega}[-\cos(\omega t + \phi)]_0^T = \frac{1}{T\omega}(-\cos(\omega T + \phi) + \cos\phi)$ Comme $\omega T = 2\pi$, et la fonction cosinus est 2π -périodique, alors $\cos(\omega T + \phi) = \cos\phi$ et :

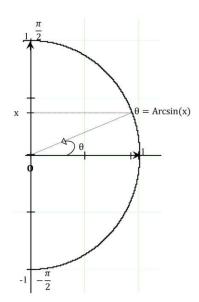
la valeur moyenne de cosinus est donc nulle, on retrouve ce résultat graphiquement.





Soit m, la valeur moyenne du signal périodique f, alors m+k est la valeur moyenne du signal f+k où k est une constante

Arcsinus



Soit $x \in [-1;1]$, on appelle Arcsinus de x et on note Arcsin(x), l'unique angle $\theta \in \left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ solution de l'équation : $sin(\theta) = x$.

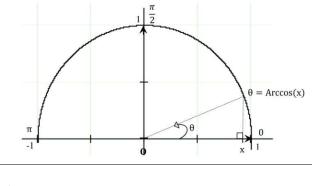
Arcsin(1)=
$$\frac{\pi}{2}$$
; Arcsin $\left(\frac{\sqrt{2}}{2}\right)$ = $\frac{\pi}{4}$; Arcsin $\left(\frac{-1}{2}\right)$ = $-\frac{\pi}{6}$

$$\forall x \in [-1;1] \quad \sin(\operatorname{Arc}\sin(x)) = x$$
$$\forall \theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \quad \operatorname{Arc}\sin(\sin(\theta)) = \theta$$

$$\sin\left(\operatorname{Arc}\sin\left(\frac{1}{8}\right)\right) = \frac{1}{8} ; \operatorname{Arc}\sin\left(\sin\left(\frac{\pi}{7}\right)\right) = \frac{\pi}{7}$$

$$\operatorname{Arc}\sin\left(\sin\left(\frac{3\pi}{2}\right)\right) = -\frac{\pi}{2}$$

Arccosinus



Soit $x \in [-1;1]$, on appelle Arccosinus de x et on note Arccos(x), l'unique angle $\theta \in [0;\pi]$ solution de l'équation : $\cos(\theta) = x$.

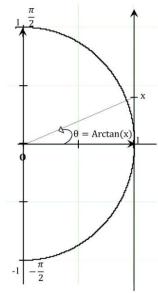
Arccos(1)=0; Arccos
$$\left(\frac{-1}{2}\right) = \frac{2\pi}{3}$$

$$\forall \theta \in [0; \pi] \quad \operatorname{Arc} \cos(\cos(\theta)) = \theta$$

$$\forall x \in [-1;1] \quad \cos(\operatorname{Arc}\cos(x)) = x$$

$$\operatorname{Arc} \cos \left(\cos \left(\frac{5\pi}{12} \right) \right) = \frac{5\pi}{12} \quad ; \quad \operatorname{Arc} \cos \left(\cos \left(-\frac{7\pi}{8} \right) \right) = \frac{7\pi}{8}$$

Arctangente



Soit $x \in \mathbb{R}$, on appelle Arctangente de x et on note $\arctan(x)$, l'unique angle $\theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ solution de

l'équation : $tan(\theta) = x$.

Arctan(1) =
$$\frac{\pi}{4}$$
; Arctan $\left(\sqrt{3}\right)$ = $\frac{\pi}{3}$; Arctan $\left(-\sqrt{3}\right)$ = $-\frac{\pi}{3}$

$$\forall x \in \mathbb{R} \ \tan(\operatorname{Arctan}(x)) = x$$

$$\forall \theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\operatorname{Arctan}(\tan(\theta)) = \theta$$

$$\tan(\arctan 112)=112$$
; Arc $\tan\left(\tan\left(\frac{5\pi}{4}\right)\right)=\frac{\pi}{4}$

Arc
$$\tan\left(\tan\left(\frac{-\pi}{16}\right)\right) = -\frac{\pi}{16}$$

Exercices d'application

Exercice 1 Compléter le tableau suivant : (k est un entier relatif : $k \in \mathbb{Z}$)

θ	$\begin{array}{c c} -2\pi ;\\ 8\pi ;\\ 2k\pi \end{array}$	π ; - π ; 7π ; -5 π	$\frac{7\pi}{6}$	$-\frac{\pi}{3}$	$-\frac{7\pi}{2}$	$\frac{27\pi}{4}$	$-\frac{47\pi}{6}$	$\frac{15\pi}{3}$	$\frac{28\pi}{6}$	kπ
$\sin \theta$										
$\cos \theta$										
tan 0										

Exercice 2 Résoudre les équations suivantes : (cela signifie qu'il faut trouver toutes les solutions de chacune de ces équations)

1)
$$\cos(x) = \frac{\sqrt{3}}{2}$$

2)
$$\cos(2t) = \frac{\sqrt{3}}{2}$$

1)
$$\cos(x) = \frac{\sqrt{3}}{2}$$
 2) $\cos(2t) = \frac{\sqrt{3}}{2}$ 3) $\sin(3\theta + \frac{\pi}{3}) = \frac{-1}{2}$

5) $tan(x) = \sqrt{3}$

Exercice 3 Compléter : le bas de la page 14, les pages 21 et 22, puis retrouver quelques formules indispensables de la page16.

Exercice 4 Résoudre les équations suivantes : (cela signifie qu'il faut trouver toutes les solutions de chacune de ces équations)

1)
$$\cos^2(x) - \sin^2(x) = -1$$

2)
$$4.\cos^2(x) + (2 - 2\sqrt{3}).\cos(x) - \sqrt{3} = 0$$

3)
$$\cos(2x) - 4\sin(x) + 3 = 0$$

Exercice 5 Application de linéarisation (transformation d'un produit en somme)

- 1) Déterminer la valeur moyenne et la valeur efficace U_{eff} d'une tension sinusoïdale u définie par $u(t) = U_m \cos(\omega t + \varphi)$ (Voir définitions bas de la page 18).
- 2) Quelle est la valeur moyenne de la fonction f, définie par : $f(t) = 10 + 5 \sin \left(3t + \frac{\pi}{2}\right)$
- 3) Linéariser cos(x).cos(2x), puis en déduire la valeur de : $J = \int_0^{\pi} cos(x).cos(2x) dx$

Exercice 6 Etudier la dernière partie de la page 19, puis déterminer:

Arctan(-1); Arctan(0); tan(Arctan189); Arctan(tan($-\frac{2\pi}{3}$)); Arctan(tan $\frac{\pi}{20}$);

$$\forall \theta \in \left] \frac{\pi}{2}; \frac{3\pi}{2} \right[\quad Arc \tan(\tan(\theta))$$

Completer et retrouver le formulaire de trigonometrie :
1) $\cos^2(\theta) + \sin^2(\theta) = \dots$
Justification:
2) Définition de tan(θ) =
Alors: $1 + \tan^2(\theta) = \dots \qquad \theta \neq \dots$
et: $1 + \tan^2(\theta) = \dots \theta \neq \dots$
3) Rappeler les formules trigonométriques suivantes :
cos(a+b) =
$\sin(a+b) = \dots$
En <u>déduire</u> les formules suivantes :
cos(a-b) =
cos(a-b) =
$\sin(a-b) = \dots$
$\sin(a-b) = \dots$
$\sin(2a) = \dots$
cos(2a) =
Exprimer cos(2a) en fonction de cos ² (a):
Exprimer cos(2a) en fonction de sin ² (a):

Chapitre 1 : Les notions indispensables pour le GEII – B. Trigonométrie

En <u>déduire</u> les formules de linéarisation de $\cos^2(a)$ et de $\sin^2(a)$ (traduction : transformer le produit $\cos^2(a)$ en somme, et faire de même avec $\sin^2(a)$)
4) Exprimer en le démontrant, tan(a+b) en fonction de tan(a) et tan(b) :
$tan(a+b) = \dots$
En déduire tan(a-b) =
Puis, tan(2a) =

Partie C: Les nombres complexes

I. Définitions et notations du GEII

$$\underline{Z} = x + j.yoù \ x \in \mathbb{R} \ , \ y \in \mathbb{R} \ et \ j^2 = -1$$

$$x \ est \ la \ partie \ réelle \ de \ \underline{Z}$$

$$On \ note : x = \mathcal{R}e(\underline{Z})$$

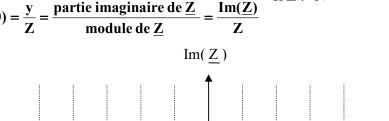
$$y \ est \ la \ partie \ imaginaire \ de \ \underline{Z}$$

$$On \ note : y = Im(\underline{Z})$$

Le <u>module</u> de \underline{Z} est noté Z ou encore $|\underline{Z}|$, c'est la distance de O à M, donc $|\underline{Z}| = Z = \sqrt{x^2 + y^2}$

L'argument de \underline{Z} est noté $arg(\underline{Z})$, c'est la mesure en radians de l'angle de vecteur orienté $(\overrightarrow{OI}, \overrightarrow{OM})$, déterminée à $2k\pi$ près $(k \in \mathbb{Z})$. On note $\theta = arg(\mathbb{Z})$, on a alors :

$$\begin{cases} cos(\theta) = \frac{x}{Z} = \frac{partie\ r\'eelle\ de\ \underline{Z}}{module\ de\ \underline{Z}} = \frac{Re(\underline{Z})}{Z} \\ sin(\theta) = \frac{y}{Z} = \frac{partie\ imaginaire\ de\ \underline{Z}}{module\ de\ \underline{Z}} = \frac{Im(\underline{Z})}{Z} \end{cases} \quad si\ Z \neq 0 \, .$$



Le <u>plan complexe</u> est muni d'un RON (O; \overrightarrow{OI} , \overrightarrow{OJ}) orienté dans le sens direct. Z = x + iy où $x,y \in \mathbb{R}$

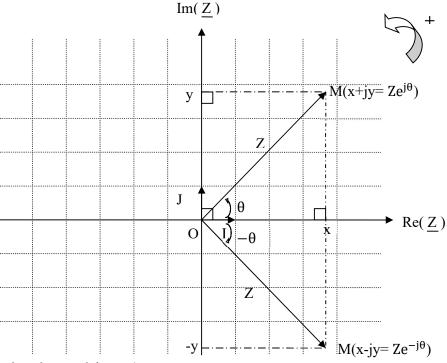
Le point M(x,y) est appelé image de Z.

Z est appelé l'affixe du point M.

Z est aussi appelé l'affixe

du vecteur OM.

$$\vec{OM} = \vec{x} \cdot \vec{i} + \vec{y} \cdot \vec{j}$$



Forme algébrique de Z: (coordonnées cartésiennes)

$$\underline{\mathbf{Z}} = \mathbf{x} + \mathbf{j} \cdot \mathbf{y}$$

Forme trigonométrique de Z: (coordonnées polaires)

 $Z = Z \cdot \cos(\theta) + j \cdot Z \cdot \sin(\theta) = Z \cdot (\cos(\theta) + j \cdot \sin(\theta))$ aussi noté : $Z = [Z, \theta]$

Forme exponentielle, géométrique ou polaire : Euler a noté $e^{i\theta} = \cos(\theta) + i \cdot \sin(\theta)$

$$Z = Z.e^{j.\theta}$$

Nombre complexe conjugué de \underline{Z} : Soit $\underline{Z} = x + j.y$, on appelle conjugué de \underline{Z} , et on note \underline{Z}^* , le nombre complexe défini par : $\underline{Z}^* = x - j.y$. Si $\underline{Z} = Z.e^{j.\theta}$, alors $\underline{Z}^* = Z.e^{-j\theta}$

II. Argument d'un nombre complexe

Comment obtenir θ l'argument d'un nombre complexe, lorsqu'il n'est pas remarquable ?

Soit $\underline{Z} = a + j.b$ un nombre complexe non nul et $a \neq 0$.

Pour déterminer un argument de \underline{Z} , on calcule

$$\begin{cases} \cos(\theta) = \frac{\text{partie réelle de } \underline{Z}}{\text{module de } \underline{Z}} = \frac{a}{\sqrt{a^2 + b^2}} \\ \sin(\theta) = \frac{\text{partie imaginaire de } \underline{Z}}{\text{module de } \underline{Z}} = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$$

Si θ n'est pas un angle remarquable, alors on calcule : $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{b}{a}$.

On peut alors en déduire θ , en utilisant la fonction Arctangente, mais en faisant très attention, car Arctan(x) $\in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$!!! Voici deux exemples, dans lesquels θ est un angle remarquable :

Exemple 1 :
$$\underline{Z} = 1 + j \cdot \sqrt{3} = 2e^{j\frac{\pi}{3}}$$
, donc $arg(\underline{Z}) = \frac{\pi}{3}$ à $2k\pi$ près (ou modulo 2π)

Ici, $\tan(\theta) = \frac{\sqrt{3}}{1} = \sqrt{3}$ et alors : $\theta = \arctan(\sqrt{3}) = \frac{\pi}{3}$, ce qui correspond bien au résultat.

Exemple 2 :
$$\underline{Z} = -1 + j \cdot \sqrt{3} = 2e^{j\frac{2\pi}{3}}$$
, donc $arg(\underline{Z}) = \frac{2\pi}{3} \grave{a} 2k\pi$ près (ou modulo 2π)

Ici,
$$\tan(\theta) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
 et alors : $\theta = \arctan(-\sqrt{3}) = -\frac{\pi}{3}$, ce qui ne correspond pas du tout au résultat !!!!

Lorsque la partie réelle de \underline{Z} est négative, la mesure principale de son argument θ n'est pas dans l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, pour obtenir le bon résultat, il suffit donc d'ajouter ou de soustraire π à Arctan $\left(\frac{b}{a}\right)$

A retenir

Soit
$$\underline{Z} = a + j.b$$
 un nombre complexe non nul, tel que $a \neq 0$.

$$\arg(\underline{Z}) = \begin{cases} Arc \tan\left(\frac{b}{a}\right) & \text{si } a > 0 \\ Arc \tan\left(\frac{b}{a}\right) \pm \pi & \text{si } a < 0 \end{cases}$$

III. Propriétés et Opérations

Soient : $\underline{Z} = x + j.y = Z.e^{j.\theta} = [Z, \theta]$ et $\underline{Z}' = x' + j.y' = Z'.e^{j.\theta'} = [Z', \theta']$ deux nombres complexes

1) Egalité entre deux nombres complexes

$$\underline{Z} = \underline{Z'} \Leftrightarrow \begin{cases} Re(\underline{Z}) = Re(\underline{Z'}) \\ Im(\underline{Z}) = Im(\underline{Z'}) \end{cases} \Leftrightarrow \begin{cases} |\underline{Z}| = |\underline{Z'}| \\ \theta = \theta' + 2.k.\pi \end{cases}$$

2) Addition de deux nombres complexes (utiliser l'écriture algébrique si possible)

$$\underline{Z} + \underline{Z'} = x + x' + j.(y + y')$$

On en déduit que : $Re(\underline{Z} + \underline{Z'}) = Re(\underline{Z}) + Re(\underline{Z}')$ et $Im(\underline{Z} + \underline{Z'}) = Im(\underline{Z}) + Im(\underline{Z}')$

3) <u>Multiplication de deux nombres complexes (</u> Rappel : $e^a . e^b = e^{a+b}$) (utiliser l'écriture exponentielle si possible)

$$Z.Z' = Ze^{j.\theta}.Z'e^{j.\theta'} = Z.Z'e^{j(\theta+\theta')}$$

On en déduit que : $arg(\underline{Z}.\underline{Z'}) = arg(\underline{Z}) + arg(\underline{Z}') + 2k\pi$, $k \in \mathbb{Z}$, et $|\underline{Z}.\underline{Z'}| = |\underline{Z}|.|\underline{Z'}|$

Ou encore que : $[\mathbf{Z}, \mathbf{\theta}] \times [\mathbf{Z}', \mathbf{\theta}'] = [\mathbf{Z}\mathbf{Z}', \mathbf{\theta} + \mathbf{\theta}']$

4) Quotient (Rappel: $\frac{e^a}{e^b} = e^{a-b}$) (utiliser l'écriture exponentielle si possible)

$$\frac{\underline{Z}}{Z'} = \frac{Z e^{j.\theta}}{Z' e^{j.\theta'}} = \frac{Z}{Z'} e^{j(\theta - \theta')}$$

On en déduit que : $arg(\underline{\underline{Z}}) = arg(\underline{Z}) - arg(\underline{Z}') + 2k\pi$, $k \in \mathbb{Z}$, $et(\underline{\underline{Z}'}) = \frac{|\underline{Z}|}{|\underline{Z}'|}$

Ou encore que : $\frac{[Z,\theta]}{[Z',\theta']} = \left[\frac{z}{z'}, \theta - \theta'\right]$

 $\underline{\text{Cas particulier}}: \text{ (Rappel : } \frac{1}{e^a} = e^{-a} \text{)} \qquad \frac{1}{\underline{Z}} = \frac{1}{Z.e^{j.\theta}} = \frac{1}{Z}.e^{-j.\theta} \text{ avec } \underline{Z} \neq 0.$

on en déduit que : $arg(\underline{z}) = -arg(\underline{z}) + 2k\pi, \ k \in \mathbb{Z}$, et $|\underline{z}| = \frac{1}{|\underline{z}|}$

Ou encore que : $\frac{1}{|\mathbf{Z},\mathbf{\theta}|} = \left[\frac{1}{z}, -\mathbf{\theta}\right]$

5) $\underline{Puissances\ n^{i\grave{e}me}\ d'un\ nombre\ complexe}$ (n est un entier naturel) (utiliser l'écriture exponentielle si possible)

(Rappel :
$$(e^p)^n = e^{p.n}et (a.b)^n = a^n.b^n$$
)

$$\underline{Z}^{n} = (Ze^{j.\theta})^{n} = Z^{n}.e^{n.j.\theta}$$

On en déduit que :
$$arg(\underline{Z}^n) = n \times arg(\underline{Z}) + 2k\pi$$
, $k \in \mathbb{Z}$, et $|\underline{Z}^n| = |\underline{Z}|^n$

Ou encore que : $[\mathbf{Z}, \mathbf{\theta}]^n = [\mathbf{Z}^n, \mathbf{n}, \mathbf{\theta}]$

6) <u>Dérivée et primitive</u> (Rappel : on note $\frac{d}{dx}(f(x))$ la dérivée de la fonction f par rapport à la variable x. $\frac{d}{dx}(e^{a.x}) = a \times e^{ax}$)

$$\frac{d}{d\theta}(\underline{Z}) = \frac{d}{d\theta}(\underline{Z}e^{j.\theta}) = j.\underline{Z}.e^{j.\theta} = j.\underline{Z}$$

« Dériver par rapport à θ c'est multiplier par j »

(Rappel : $a \neq 0$. Une primitive de $e^{a.x}$ par rapport à x est : $\frac{1}{a} \times e^{ax}$)

Une primitive de
$$\underline{Z}$$
 par rapport à θ est $\frac{\underline{Z}}{j} = -j.\underline{Z}$

« Intégrer par rapport à θ c'est multiplier par –j »

IV. Formules importantes

1) Opérations sur le conjugué d'un nombre complexe

$$\left(\underline{Z} + \underline{Z'}\right)^* = \underline{Z}^* + \underline{Z'}^* \qquad \left(\underline{Z}.\underline{Z'}\right)^* = \underline{Z}^*.\underline{Z'}^* \qquad \left(\underline{Z}^*\right)^* = \frac{\underline{Z}^*}{\underline{Z'}^*} \left(\underline{Z}^*\right)^* = \left(\underline{Z}^*\right)^*$$

2) Formules d'Euler

$$\underline{Z} + \underline{Z}^* = a + jb + a - jb = 2a \quad ; \quad \underline{Z} - \underline{Z}^* = a + jb - (a - jb) = 2jb \quad ; \quad \underline{Z} \cdot \underline{Z}^* = \mathbf{Z} \cdot \mathbf{e}^{j\theta} \mathbf{Z} \cdot \mathbf{e}^{-j\theta} = \mathbf{Z}^2$$

$$\underline{\mathbf{Z}} + \underline{\mathbf{Z}}^* = \mathbf{Z} \cdot \mathbf{Re}(\underline{\mathbf{Z}}) \quad ; \quad \underline{\mathbf{Z}} - \underline{\mathbf{Z}}^* = \mathbf{Z} \cdot \mathbf{j} \cdot \mathbf{Im}(\underline{\mathbf{Z}}) \quad ; \quad \underline{\mathbf{Z}} \cdot \underline{\mathbf{Z}}^* = \mathbf{Z}^2$$

Cas particulier : $\underline{Z} = e^{j\theta}$

$$\underline{Z} + \underline{Z}^* = e^{j\theta} + e^{-j\theta} = 2Re(e^{j\theta}) = 2cos\theta \; ; \; \underline{Z} - \underline{Z}^* = e^{j\theta} - e^{-j\theta} = 2jIm(e^{j\theta}) = 2jsin\theta$$

$$\boxed{ \text{Formules d'Euler : } \cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2} \text{ et } \sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} }$$

3) Formule de Moivre

$$\left(\cos(\theta)+j.\sin(\theta)\right)^n=\left(e^{j\theta}\right)^n=e^{jn\theta}=\cos(n\theta)+j\sin(n\theta)$$

Formule de Moivre :
$$(\cos(\theta) + j\sin(\theta))^n = \cos(n\theta) + j\sin(n\theta)$$

Exercices d'application

Exercice 1 Sur les pages 29 à 31, compléter la grille de nombres complexes.

Exercice 2 Ecrire chacun des nombres complexes suivants sous forme exponentielle :

$$2.e^{j\frac{\pi}{4}}.e^{j\frac{\pi}{6}}; -3.e^{j\frac{\pi}{7}}; \frac{\left(-\sqrt{3}+j\right)^4}{\left(1-j\right)^5}; \frac{e^{-j\frac{\pi}{3}}}{j(-1+j)}; 1+e^{j\theta}$$

Exercice 3 Déterminer le module et un argument des nombres complexes suivants :

$$\underline{Z}_1 = 4 + 3j$$
; $\underline{Z}_2 = -5 + 3j$; $\underline{Z}_3 = \sqrt{7} - j\sqrt{2}$

 $\underline{Z}_4 = R + j.L.\omega$ (impédance complexe d'u circuit RLC en parallèle); $\underline{Z}_5 = \frac{1}{R} + \frac{1}{iL.\omega} + j.C.\omega$

où R, L,C et ω sont des nombres réels non nuls. ; $\underline{Z}_6 = \frac{jRL\omega}{R+iL\omega}$ (R, L et ω sont des réels strictement positifs.) $\underline{Z}_7 = \frac{(1+jx)^{10}}{(1-ix)^6}$ où x est un nombre réel.

Exercice 4 En utilisant la formule d'Euler, linéariser les expressions : sin³x (on développera d'abord $(a-b)^3$) et $\sin x.\cos(2x).\sin(3x)$. En déduire la valeur des intégrales suivantes :

$$J = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \sin^3(t) dt \text{ et } I = \int_0^{\frac{\pi}{3}} \sin(\theta) \cos(2\theta) \sin(3\theta) d\theta$$

Exercice 5 Soit $\underline{U} = \underline{I} \left(R - \frac{j}{C\omega} \right)$ l'expression complexe de la tension aux bornes de l'association en série comprenant une résistance R et un condensateur C. Déterminer le module et un argument de I, nombre complexe associé à l'intensité i du courant dans le circuit.

Exercice 6 Résolution d'équations du second degré :

- 1) Rappel: Soit $P(x) = ax^2 + bx + c$ avec a, b, c réels et $a \ne 0$: pour résoudre P(x) = 0. On calcule le discriminant $\Delta = b^2 - 4ac$
- Si $\Delta > 0$, P possède deux racines réelles : $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$ Si $\Delta = 0$, P possède une racine réelle double : $x_1 = \frac{-b}{2a}$
- Si $\Delta < 0$, P possède deux racines complexes conjuguées : $z_1 = \frac{-b+j\sqrt{|\Delta|}}{2a}$ et $z_2 = \frac{-b-j\sqrt{|\Delta|}}{2a}$

Résoudre l'équation $1 + z + z^2 = 0$

2) Si a, b et c sont des nombres complexes : Soit $P(x) = ax^2 + bx + c$ avec a, b, c complexes et $a \ne 0$: pour résoudre P(x) = 0. On calcule le discriminant $\Delta = b^2 - 4ac$ qui est un nombre complexe. On cherche alors les racines carrées de Δ , par définition, ce sont les deux solutions δ_1 et δ_2 de l'équation : $\delta^2 = \Delta$

P possède alors deux racines :
$$x_1 = \frac{-b - \delta_1}{2a}$$
 et $x_2 = \frac{-b - \delta_2}{2a}$

- a) Résoudre l'équation : $z^2 + 2(1+j)z + 4j = 0$
- b) Résoudre l'équation : $z^2 + (2 i)z 2i = 0$

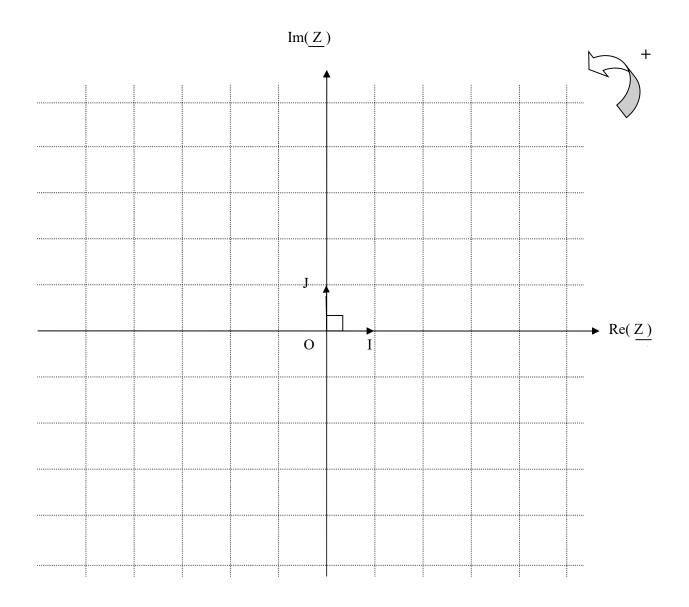
Chapitre 1 : Les notions indispensables pour le GEII – C. Les nombres complexes

$\underline{Z} = x + jy$ $\underline{Z} = Z \cdot e^{j\theta}$ $\underline{Z} = [Z, \theta]$	$Re(\underline{Z}) = x$ $Re(\underline{Z}) = Z.cosθ$	$Im(\underline{Z}) = y$ $Im(\underline{Z}) = Z.\sin\theta$	$\left \underline{Z} \right = \sqrt{x^2 + y^2}$ $\left \underline{Z} \right = Z$	$Arg(\underline{Z})=\theta$	Ecriture exponentielle ou algébrique	Conjugué: $\underline{Z}^* = x - jy$ $\underline{Z}^* = Z. e^{-j\theta}$ $\underline{Z}^* = [Z, -\theta]$
$\underline{Z_1} = 5$						
$\overline{Z_2} = -3j$						
$\underline{Z_3} = \sqrt{3} + j$						
$\underline{Z_4} = \sqrt{3} - j$						
$\overline{Z_5} = -1 + j$						
$Z_6 = -4 - 4j\sqrt{3}$						
$\underline{Z_7} = e^{j\frac{\pi}{2}}$						
$Z_8 = e^{j\pi}$						
$\underline{Z_9} = e^{2j\pi}$						

Chapitre 1 : Les notions indispensables pour le GEII – C. Les nombres complexes

$Z_{10} = [7, -\frac{\pi}{3}]$			
$\underline{\mathbf{Z}_{11}} = e^{kj\pi}; \mathbf{k} \epsilon \mathbb{Z}$			

Notes:	



Partie D : Résolution d'équations différentielles linéaires du premier ordre à coefficients constants

I. Définitions

On appelle <u>équation différentielle du premier ordre</u>, toute équation dans laquelle interviennent une fonction et sa dérivée.

Exem	ples

✓	$f'=f$, que l'on peut écrire aussi : $f'(x)=f(x)$ ou encore : $\frac{df}{dx}=f$, ou encore :
✓	$\frac{df}{dx}(x) = f(x).$ $\frac{dq}{dt} + \frac{1}{RC}q = 0, \text{ que l'on peut écrire aussi :}$
✓	$(x+1)y.y'+y^2 = \frac{x.y^3}{2}$, que l'on peut écrire aussi :

Résoudre sur un intervalle I une équation différentielle c'est déterminer l'ensemble des fonctions dérivables sur I qui vérifient cette équation.

Exemple

	équation différe	•	•	

Chapitre 1 : Les notions indispensables pour le Gl	EII – D. Equations différentielles
II. Résolution d'une équation différentielle liné	aire du premier ordre à coefficients
<u>constants</u>	_
1) <u>Définition</u>	
On appelle équation différentielle <u>linéaire du p</u> toute équation de la forme : y'(x) + a. y(x) = f(x)où a est une constante ré- intervalle I, appelée second membre de l'équati	elle et f une fonction continue sur un
F1	
<u>Exemples</u>	
$2y'-y = x^3 - x + 2$; $2.y'-3.y = \cos x - 2\sin x$; $y = \cos x - 2\sin x$	$y'-2y = e^{2x}(x^2-3)$
2) <u>Résolution de l'équation dite «sans second mer</u> constante réelle :	$\underline{\text{mbre } } : \underline{y'}(t) + a.y(t) = 0 \text{ où a est une}$

3) Théorème admis

<u>Théorème</u>: Soit (E), une équation différentielle linéaire du premier ordre à coefficients constants: y'(x) + a.y(x) = f(x) (E) (où a est une constante réelle et f est une fonction continue sur I).

Pour résoudre (E) sur I, on procède en deux étapes :

Etape 1 : On résout <u>l'équation homogène</u> (ou sans second membre) associée :

$$(E_0) y'(x) + a.y(x) = 0$$

Les solutions de (E₀) sont : $y_0(x) = \lambda \cdot e^{-ax}$ où λ est une constante réelle.

Etape 2: On recherche <u>une solution particulière</u> de (E) y'(x) + a.y(x) = f(x), que l'on note y_p .

<u>Conclusion</u>: Les solutions de (E) sont alors toutes les fonctions de la forme : $y(x)=y_0(x)+y_p(x)$. Elles sont aussi appelées « solution générale » de (E) et notées y_G

4) Recherche d'une solution particulière

Dans les cas les plus courants, on cherchera une solution particulière de l'équation $\frac{dy}{dt} + a.y = f(t)$ (E), du même type que la fonction f apparaissant au second membre de (E).

Forme du second membre $t \mapsto f(t)$	Forme de la solution particulière cherchée $t \mapsto y_p(t)$
f(t) = constante	$y_p(t) = constante$
f(t) = polynôme	$y_p(t) = polynôme de même degré$
$f(t) = \alpha.\cos(mt) + \beta.\sin(mt)$	$y_p(t) = A.\cos(mt) + B.\sin(mt)$
où α, β et m sont des réels	où A et B sont des constantes.
$f(t) = g(t).e^{m.t}$	$y_{p}(t) = z(t).e^{m.t}$
où m est un réel.	Jp(c) Z(c)te

Exemples:

	R			•		`	ĺ				-															

Chapitre 1: Les notions indispensables pour le GEII – D. Equations différentielles
✓ Résoudre l'équation (E) sur R : $3\frac{dy}{dx} - 2y = e^{2x}(x^2 - 3)$

Chapitre 1 : Les notions indispensables pour le GEII – D. Equations différentielles
<u>Théorème de superposition</u> (lorsque le second membre de (E) est une somme de fonctions)
Soit l'équation à résoudre : $\frac{dy}{dt}$ + a. $y = f_1(t) + f_2(t) + f_3(t)$ (E),
Si $t \mapsto y_1(t)$ est une solution particulière de l'équation $\frac{dy}{dt} + a \cdot y = f_1(t)$,
Si $t \mapsto y_2(t)$ est une solution particulière de l'équation $\frac{dt}{dt} + a \cdot y = f_2(t)$,
Et si $t \mapsto y_3(t)$ est une solution particulière de l'équation $\frac{dy}{dt} + a$. $y = f_3(t)$,
Alors la fonction $t \mapsto y_1(t) + y_2(t) + y_3(t)$ est une solution particulière de (E).

 $\underline{\text{Remarque}}$ Ce résultat s'étend au cas où f, le second membre de (E) est la somme d'un nombre quelconque de fonctions.

Chapitre 1 : Les notions indispensables pour le GEII – **D. Equations différentielles**

Exemple Résoudre l'équation (E) sur \mathbb{R} : $3\frac{dy}{dx} - 2y = e^{2x}(x^2 - 3) + x^2$
5) Equation différentielle linéaire du premier ordre avec condition initiale
5) Equation différentielle linéaire du premier ordre avec condition initiale Définition / Théorème L'équation différentielle linéaire du premier ordre(E) y'(x) + a.y(x) = f(x) possède une infinité de solutions sur I notées : y _G (t)=y ₀ (t)+y _p (t). Il existe une unique solution y de (E) sur I, vérifiant la condition initiale : y(t ₀)=y ₀ , où t ₀ et y ₀ sont des valeurs données dans l'énoncé du problème.
$\frac{\text{D\'efinition / Th\'eor\`eme}}{y'(x) + a.y(x) = f(x) \text{ poss\`ede une infinit\'e de solutions sur I not\'ees}: y_G(t) = y_0(t) + y_p(t).$ Il existe une unique solution y de (E) sur I, vérifiant la condition initiale: y(t_0) = y_0, où t_0 et y_0 sont des valeurs données dans l'énoncé du problème. $\underline{\text{Exemple}} \text{ R\'esoudre sur } \mathbb{R} \text{ l'équation différentielle (E)}: 3 \frac{dy}{dx} - 2y = e^{2x}(x^2 - 3) + x^2 \text{ avec la}$
$\frac{\text{D\'efinition / Th\'eor\`eme}}{y'(x) + a.y(x) = f(x) \text{ poss\`ede une infinit\'e de solutions sur I not\'ees}: y_G(t) = y_0(t) + y_p(t).$ Il existe une unique solution y de (E) sur I, vérifiant la condition initiale: y(t_0) = y_0, où t_0 et y_0 sont des valeurs données dans l'énoncé du problème. $\underline{\text{Exemple}} \text{ R\'esoudre sur } \mathbb{R} \text{ l'équation différentielle (E)}: 3 \frac{dy}{dx} - 2y = e^{2x}(x^2 - 3) + x^2 \text{ avec la}$
$\frac{\text{D\'efinition / Th\'eor\`eme}}{y'(x) + a.y(x) = f(x) \text{ poss\`ede une infinit\'e de solutions sur I not\'ees}: y_G(t) = y_0(t) + y_p(t).$ Il existe une unique solution y de (E) sur I, vérifiant la condition initiale: y(t_0) = y_0, où t_0 et y_0 sont des valeurs données dans l'énoncé du problème. $\underline{\text{Exemple}} \text{ R\'esoudre sur } \mathbb{R} \text{ l'équation différentielle (E)}: 3 \frac{dy}{dx} - 2y = e^{2x}(x^2 - 3) + x^2 \text{ avec la}$
$\frac{\text{D\'efinition / Th\'eor\`eme}}{y'(x) + a.y(x) = f(x) \text{ poss\`ede une infinit\'e de solutions sur I not\'ees}: y_G(t) = y_0(t) + y_p(t).$ Il existe une unique solution y de (E) sur I, vérifiant la condition initiale: y(t_0) = y_0, où t_0 et y_0 sont des valeurs données dans l'énoncé du problème. $\underline{\text{Exemple}} \text{ R\'esoudre sur } \mathbb{R} \text{ l'équation différentielle (E)}: 3 \frac{dy}{dx} - 2y = e^{2x}(x^2 - 3) + x^2 \text{ avec la}$
$\frac{\text{D\'efinition / Th\'eor\`eme}}{y'(x) + a.y(x) = f(x) \text{ poss\`ede une infinit\'e de solutions sur I not\'ees}: y_G(t) = y_0(t) + y_p(t).$ Il existe une unique solution y de (E) sur I, vérifiant la condition initiale: y(t_0) = y_0, où t_0 et y_0 sont des valeurs données dans l'énoncé du problème. $\underline{\text{Exemple}} \text{ R\'esoudre sur } \mathbb{R} \text{ l'équation différentielle (E)}: 3 \frac{dy}{dx} - 2y = e^{2x}(x^2 - 3) + x^2 \text{ avec la}$
$\frac{\text{D\'efinition / Th\'eor\`eme}}{y'(x) + a.y(x) = f(x) \text{ poss\`ede une infinit\'e de solutions sur I not\'ees}: y_G(t) = y_0(t) + y_p(t).$ Il existe une unique solution y de (E) sur I, vérifiant la condition initiale: y(t_0) = y_0, où t_0 et y_0 sont des valeurs données dans l'énoncé du problème. $\underline{\text{Exemple}} \text{ R\'esoudre sur } \mathbb{R} \text{ l'équation différentielle (E)}: 3 \frac{dy}{dx} - 2y = e^{2x}(x^2 - 3) + x^2 \text{ avec la}$

Chapitre 1 : Les notions indispensables pour le GEII – D. Equations différentielles

Exercices d'application

Exercice 1 Résoudre les équations différentielles suivantes :

- 1) $y'+y = x^{2}$ (E) 2) $\begin{cases} 3y'(t) + 7y(t) = -2 \\ y(0) = 1 \end{cases}$ 3) $y'+2.y = 3\cos(2x)$
- 4) $y'-2y = e^{-3x}(x+1)$

Exercice 2 Dans un circuit RC en série, on a l'équation différentielle (E) suivante :

 $\tau \frac{ds}{dt} + s(t) = e(t)$ où e(t) et s(t) sont les signaux respectivement d'entrée et de sortie et $\tau = RC$

- a) Résoudre (E) lorsque e(t) = E où E est une constante. Que se passe-t-il lorsque s(0) = 0?
- b) Résoudre (E) lorsque $e(t) = \cos(\omega t)$ où ω est une constante.

Que se passe-t-il lorsque s(0) = 0?

Exercices d'entraînement pour les poursuites d'études longues

Exercice 1 La valeur exacte de $\sin \frac{\pi}{12}$ est : 1) $\frac{\sqrt{2-\sqrt{3}}}{2}$ ou bien 2) $\frac{\sqrt{3}}{4}$?

Exercice 2 a est un nombre réel quelconque et $E = \cos a - \sin a$. Quelle est la bonne réponse ?

1) E =
$$\cos(2a)$$
 2) E = $\sqrt{2}\sin(\frac{\pi}{4} - a)$ 3) E = $\sin(2a)$

Exercice 3 Transformation d'une somme en produit et application et résolution d'équation

- 1) Simplifier $\cos(a+b)$ - $\cos(a-b)$, et en déduire la formule suivante : $\cos(p) \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right).$
- 2) Résoudre alors l'équation suivante : $cos(x) cos(2x) = sin(\frac{3x}{2})$

Exercice 4

- 1) Ecrire autrement l'expression A. $\cos(\omega \cdot t + \varphi)$
- 2) Soit $f(t) = a \cdot \cos(\omega t) + b \cdot \sin(\omega t)$, déterminer A>0 et φ tels que :
- $f(t) = A.\cos(\omega \cdot t + \phi)$.
- 3) Exprimer sous la forme précédente les fonctions suivantes, puis en déduire leur amplitude.

$$f_1(t) = \cos(t) - \sin(t)$$
 et $f_2(t) = \cos(\omega t) + \sqrt{3} \sin(\omega t)$

<u>Exercice 5</u> Arcsin($\frac{\sqrt{3}}{2}$); Arcsin(0); sin(Arcsin $\frac{3}{5}$); Arcsin(sin $\frac{-\pi}{6}$); Arcsin(sin $\frac{5\pi}{7}$);

Arccos(-1); Arccos(-
$$\frac{\sqrt{3}}{2}$$
); Arccos(0); cos(Arccos $\frac{113}{114}$); Arccos(cos $\frac{2\pi}{3}$);

$$\operatorname{Arccos}(\cos\frac{-8\pi}{7})$$
; $\operatorname{Arctan}(\sqrt{3})$;

Exercice 6 Simplifier sin(Arccosx), on précisera son ensemble de définition.

Exercice 7 Résoudre l'équation : Arccos(x)+Arccos(
$$\frac{4}{5}$$
)= $\frac{\pi}{2}$

Exercice 8 (pour le calcul intégral)

On pose $t = tan(\frac{a}{2})$, en déduire les formules suivantes : $\begin{cases} sin(a) = \frac{2t}{1+t^2} \\ cos(a) = \frac{1-t^2}{1+t^2} \\ tan(a) = \frac{2t}{1-t^2} \end{cases}$

Exercice 9 Déterminer le module et un argument des nombres complexes suivants :

- a) $\underline{Z} = \frac{1 + j \cdot \tan \theta}{1 j \cdot \tan \theta}$, puis l'écrire sous forme géométrique.
- b) $\underline{Z} = e^{4jx} + e^{2jx}$ où $x \in [0, \pi]$. (Indication : factoriser par e^{3jx})
- c) $Z = \ln x.e^{jx}$; 0 < x < 1

Exercice 10 Pour aller plus loin.... Simplifier l'expression suivante :

 $C = 1 + \cos \theta + \cos(2\theta) + \dots + \cos(n\theta)$

 $\underline{Indication}: Montrer \ que \ C \ est \ la \ partie \ r\'eelle \ de \ S = 1 + e^{i\theta} + e^{2i\theta} + ... + e^{in\theta}, \ et \ on \ rappelle \ la$

formule: $1 + a + a^2 + ... + a^n = \frac{1 - a^{n+1}}{1 - a}$; avec $a \ne 1$

Annales du concours d'entrée à l'ITII (école d'ingénieur par apprentissage)

Question 1 Calculer:

$$\cos^6 x - \cos^4 x + \sin^2 x \cdot \cos^2 x - \sin^4 x + \sin^6 x =$$

Exprimer $\cos^2 a$ et $\sin^2 a$ en fonction de $\cos 2a$:

$$\cos^2 a =$$

$$|sin^2 a| =$$

En déduire des réels a, b, c, d tels que l'égalité ci-dessous soit valable pour tout réel x:

$$\cos^6 x - \sin^6 x = a + b \cdot \cos 2x + c \cdot \cos 4x + d \cdot \cos 6x$$

$$a =$$

$$b =$$

$$c =$$

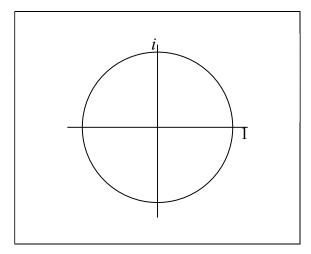
$$a = b = c = d =$$

Calculer

$$\int_0^{\frac{\pi}{4}} \left(\cos^6 x - \sin^6 x\right) dx =$$

Annales du concours d'entrée à l'ITII

(a) Placer sur la figure ci-dessous les solutions de l'équation $z^3 = i$:



(b) Soit S l'ensemble des solutions de l'équation $z^3 = i$. Calculer les valeurs possibles de la fonction f(z) ci dessous lorsque z parcourt S, puis calculer la somme de ces valeurs :

$$f(z) = \frac{1+z+z^2+z^3+z^4+z^5}{1-z} \qquad (z \neq 1)$$

$$z \in S \implies f(z) =$$

$$\sum_{z \in S} f(z) =$$

(c)On considère l'équation : $\left(\frac{z}{\overline{z}}\right)^n - \left(\frac{\overline{z}}{z}\right)^n = i\sqrt{2}$, $(|z| \neq 0)$, et on note S^* l'ensemble de ses solutions.

$$z \in S^* \Rightarrow \begin{cases} \text{Le module de z est de la forme } \rho = \\ \\ \text{L'argument de z est de la forme } \theta = \end{cases}$$

Pour n=2 tracer sur la figure ci dessus les éléments de S^* tels que $|z| \le 1$.

Minuscule	Majuscule	Se lit
α	A	alpha
β	В	bêta
γ	Γ	gamma
δ	Δ	delta
3	Е	epsilon
ζ	Z	dzêta
η	Н	êta
θ	Θ	thêta
l	I	iota
К	K	kappa
λ	Λ	lambda
μ	M	mu
ν	N	nu
ξ	Ξ	xi
0	0	omicron
π	П	pi
ρ	P	rhô
σ	Σ	sigma
τ	Т	tau
υ	Υ	upsilon
φ	Ф	phi
χ	X	khi
ψ	Ψ	psi
ω	Ω	Oméga

Chapitre 1 : Les notions indispensables pour le GEII – Notes

Chapitre 1 : Les notions indispensables pour le GEII – Notes

Chapitre 1 : Les notions indispensables pour le GEII – Notes

Chapitre 1 : Les notions indispensables pour le GEII – Notes